Особенности плавки и литья алюминиевых сплавов

Страницы: 1 2

В зависимости от назначения сплавов, масштаба производства и условий литейных цехов плавку алюминиевых сплавов осуществляют в ванных электропечах сопротивления (вместимостью от 150 кг до 3 т), индукционных тигельных и канальных печах (от 180 кг до 6 т), а также в отражательных пламенных печах ванного типа (до 30 т), в тигельных (до 250 кг) электросопротивления и в печах, работающих на жидком и газообразном топливе (рис. 8.2).

схемы печей для плавки алюминиевых сплавов
Рис. 8.2. Схемы печей для плавки алюминиевых сплавов:
а — отражательная пламенная печь ванного типа, 6 — ванная электропечь сопротивления, в — тигельная электропечь сопротивления, г — индукционная тигельная печь; 1 — ванна жидкого металла, 2 — летка для выпуска жидкого металла. 3 — загрузочные окна, 4 —  нагревательные элементы, 5 — свод печи, б — тигель, 7 — спираль, 8 — индуктор

В качестве исходных шихтовых материалов используют чушковый алюминий различных марок, отходы собственного производства, а также легирующие компоненты в виде чистых металлов или лигатур.

При плавке в открытых печах алюминиевые сплавы легко окисляются с образованием на поверхности расплава прочной оксидной пленки Al2O3, защищающей его от дальнейшего окисления. Замешивание пленки в расплав в процессе плавки вызывает его загрязнение. Алюминиевые сплавы интенсивно растворяют газы, в основном водород, в результате чего в отливках образуется пористость.

Алюминиево-магниевые сплавы, отличающиеся очень высокой окисляемостью, плавят под слоем покровных защитных флюсов, в качестве которых используют хлористые и фтористые соли: карналлит (MgCl2·KCl) и смеси карналлита с 40—50% ВаCl2 и 10—15% CaF2, вводимых в количестве 2% от массы шихты. Уменьшают склонность к окислению и вводимые в сплав добавки бериллия и титана (до 0,07%).

Процессы очистки расплавов от взвешенных неметаллических включений широко используют при плавке алюминиевых сплавов. С этой целью расплавы продувают инертными (аргон, азот) или активными (хлор) газами, обрабатывают хлористыми солями и рафинирующими флюсами, ультразвуком, вакуумируют, фильтруют.

методы рафинирования алюминиевых сплавов
Рис. 8.3. Методы рафинирования алюминиевых сплавов:
а — продувка газами, 6 — фильтрование через слой расплавленного флюса, в — вакуумирование с последующей продувкой газами: 1 — ковш. 2 — пористая пробка, 3 — тигель, 4 — диск, 5 — флюс. 6 — запорный стержень, 7 — раздаточный ковш, 8 — вакуумно-продувочная камера, 9 — трубка для продувки газами

При рафинировании продувкой газами всплывающие их пузырьки выносят на поверхность расплава частицы неметаллических включений, растворенные газы. Газ продувают либо через трубку сверху, либо через пористую пробку 2 в ковше 1 (рис. 8.3,а). Обработку проводят при температуре 710—730°С в течение 5—20 мин. Наиболее эффективна обработка хлором, однако ввиду его токсичности широко используют инертные газы азот и аргон.

Наиболее широко применяют обработку хлористыми солями — ZnCl2, MnCl2, AlCl3,C2Cl6, рафинирующее действие которых основано на образовании газообразного хлористого алюминия по реакции МеCl3+Al = AlCl3+Ме.

Наиболее эффективна обработка гексахлорэтаном C2Cl6, при которой кроме АlCl3 образуется газообразный тетрахлорэтилен C2Cl4. В отличие от других хлоридов гексахлорэтан негигроскопичен, более дешев, обладает высокой дегазирующей способностью.