Двухслойные никелевые покрытия

Присущая блестящим покрытиям, полученным из электролитов с серусодержащими органическими добавками, хрупкость в значительной степени ограничивает их применение. Поэтому ответственные изделия сложной формы, например автомобильные бамперы, покрывают пластичным полублестящим никелем, легко поддающимся полировке до высокого блеска. Для этой цели можно использовать два типа электролитов. Оба они содержат основные компоненты ванны Уоттса, но в один из них добавляют органические соединения, не содержащие серу, а в другие добавляют соли кобальта. Для получения полублестящих покрытий требуются значительно меньшие затраты на рабочую силу и материалы, необходимые для полировки, чем для получения матовых покрытий. Однако полублестящие покрытия с последующей полировкой имеют ограниченное применение, а чаще их используют в качестве первого слоя в дуплекс-процессе. Этот процесс имеет в настоящее время более широкое применение, обеспечивая наряду с высоким блеском покрытий их пластичность и коррозионную стойкость.

В литературе приводятся данные о худшей коррозионной стойкости блестящих никелевых осадков по сравнению с матовыми полированными осадками. В то же время в связи с ростом химической и нефтеперерабатывающей промышленности, атмосфера воздуха стала более загрязненной агрессивными газами (SO2, СO2 и др.) и поэтому к защитно-декоративным покрытиям стали предъявлять более повышенные требования в отношении их коррозионной стойкости.

Двухслойные никелевые покрытия отличаются хорошей пластичностью, высокой коррозионной стойкостью и блеском. Эти покрытия получают при никелировании изделий в двух различных по составу электролитах. В состав первого электролита входят лишь бессернистые добавки, большая часть которых обладает выравнивающими свойствами. Осадки из этого электролита получаются полублестящими, отличаются высокой пластичностью и имеют столбчатую структуру с повышенной коррозионной стойкостью. Из второго электролита, в состав которого входят сильные, серусодержащие блескообразователи, получаются осадки с зеркальным блеском поверхности, имеющие пластичную структуру. Лучшие в коррозионном отношении осадки получаются при толщине второго (внешнего) блестящего слоя, равной 25—35% от всей толщины двухслойного покрытия.

Отличительной чертой двухслойных блестящих никелевых покрытий является их высокая коррозионная стойкость при минимальных внутренних напряжениях. Благодаря этому они выгодно отличаются от всех других видов блестящих никелевых покрытий.

Атмосферные коррозионные испытания, проведенные в различных климатических районах США, как на стальных, так и на изделиях из цинкового сплава, показали лучшую коррозионную стойкость двухслойных никелевых покрытий по сравнению с обычными блестящими никелевыми покрытиями, не уступающую полированным никелированным образцам, полученным из обычного матового электролита (рис. 100, 101).


Рис. 100. Коррозионная стойкость деталей из стали (а) и цинкового сплава (б) с различными видами защитно-декоративного покрытия после одного года натурных испытаний в районе Детройта:
1 — двухслойное никелевое, толщина покрытия для стали: 29 мкм полублестящего никеля, 8,5 мкм блестящего никеля, 0,25 мкм хрома; для цинкового сплава: 37,5 мкм блестящего никеля, 0,25 мкм хрома; 2 — блестящее никелевое, толщина покрытий для стали 7,5 мкм меди, 16 мкм полублестящего никеля, 6,5 мкм блестящего никеля, 0,25 мкм хрома; для цинкового сплава: 7,5 мкм меди, 22,5 мкм блестящего никеля, 0,25 мкм хрома
Рис. 101. Внешний вид стальных образцов после 9-месячных испытаний на морском побережье, Толщина покрытия:
а —18 мкм меди из кислого электролита, 18 мкм блестящего никеля, 0,25 мкм хрома; 6 — 36 мкм блестящего никеля, 0,25 мкм хрома; в —28 мкм полу блестящего никеля, 8 мкм блестящего никеля, 0,25 мкм хрома; г — 36 мкм матового никеля с последующей полировкой, 0,25 мкм хрома

Повышенная коррозионная стойкость двухслойных никелевых покрытий объясняется двумя факторами:
1)       меньшей пористостью, так как поры в разных слоях никелевого покрытия не совпадают;
2)       коррозия начинается всегда в блестящем (верхнем), содержащем серу, слое комбинированного никелевого покрытия. Этот слой является анодом как по отношению к хрому, так и по отношению к полублестящему слою никеля. Коррозионный процесс, достигая этого слоя (полублестящего), задерживается, и далее распространяется в горизонтальной плоскости по границе двух слоев комбинированного никелевого покрытия.

Лучшей комбинацией промежуточных слоев в отношении коррозионной стойкости защитно-декоративных покрытий является Ni—Cr—Ni—Cr. Промежуточный слой хрома играет роль барьера, предупреждающего от коррозии основной слой никеля, однако практическое осуществление такой комбинации связано с трудностями электроосаждения никеля на хром.

Из рис. 102 видно, что уротропин, вводимый в первую ванну полублестящего никелирования в количестве 0,02 г/л, примерно также повышает катодную поляризацию, как 0,2 г/л тиомочевины (сильный блескообразователь) в комбинации с 1,0 г/л паратолуолсульфамида.


Рис. 102. Влияние уротропина на катодную поляризацию никелевого электролита:
1 — без добавок; 2-е 0,01 г/л Уротропина; 3 — с 0,02 г/л уротропина

Для получения двухслойных, блестящих никелевых покрытий можно в электролит типа Уоттса ввести одну из следующих добавок (г/л):
для первого, полублестящего, слоя: 0,02—0,07 уротропина; 0,3—0,8 хлоральгидрата; 0,1—0,2 кумарина; 0,05— 0,15, 1,4-бутиндиола;
для второго, блестящего, слоя: 0,2—0,3 тиомочевины; 1—2 паратолуолсульфамида или хлорамина или 0,2— 3, 1,4-бутиндиола, 1—2 хлорамина Б, 0,2—0,5 мг/л порошка «Прогресс».

Паратолуолсульфамид или хлорамин вводят для снижения внутренних напряжений. Порошок «Прогресс» — антипиттинговая добавка. За рубежом все блескообразователи, из которых при защитно-декоративном хромировании решающее значение имеют кислые медные электролиты и никелевые, запатентованы и зашифрованы. В литературе (журнальной и фирменной) широко рекламируется так называемый «никель — сил», процесс, который предусматривает нанесение верхнего тонкого никелевого слоя (2—3 мкм) из электролита, содержащего взмученное тонко измельченное инертное вещество, например песок, каолин. Это обусловливает микропористость хрома и повышенную коррозионную стойкость комбинированного покрытия (Cu—Ni—Cr) при полной автоматизации процесса. На крупных предприятиях нашей страны эти процессы тоже автоматизированы.

Часто для блестящего никелирования рекомендуется электролит, содержащий следующие добавки, г/л: 0,05—0,5 кумарина; 0,01—0,2 хинальдина; 0 — 0,5 п - толуолсульфамида; 0,05 сахарина; 0—0,1 лаурилсульфатнатрия, pH = 4,0-f--т-4,5; катодная плотность тока 2—4 А/дм2; температура 45—60° С.