Свойства стекол

Область применения стекол определяется их свойствами. Так, для листовых строительных стекол важны прочность на сжатие и растяжение, термические свойства, химическая устойчивость, светопрозрачность. Ниже рассмотрены важнейшие свойства стекла, характеризующие его в твердом состоянии.

Плотность. Плотностью называется отношение массы тела к его объему. Определяется она по формуле p = m/V, где р — плотность; г/см3; m — масса, г; V — объем, см3.

Стекло имеет плотность от 2,2 до 7,5 г/см3. Она определяется химическим составом. В состав тяжелых стекол (флинтов) входит много свинца, в состав легких — окислы элементов с малой атомной массой — лития, бериллия, бора. Большинство промышленных строительных стекол (оконное, полированное, профильное) имеет плотность 2,5—2,7 г/см3 в частности оконное - стекло 2,55 г/см3. Плотность стекол в некоторой степени зависит и от температуры. Так, с повышением температуры плотность стекол уменьшается.

Прочность. Прочностью называется способность материала сопротивляться внутренним напряжениям, возникающим в результате действия внешних нагрузок. Прочность характеризуется пределом прочности. В зависимости от направления действия нагрузки определяют предел прочности при сжатии, растяжении, изгибе и т. д.

Предел прочности стекол при сжатии R (кгс/мм2, Па) измеряют величиной разрушающей силы F (кгс), действующей на поперечное сечение S (мм2) образца перпендикулярно действующей силе: R = F/S.

Предел прочности на сжатие для различных видов стекла  колеблется от 50 до 200 кгс/мм2, например прочность оконного стекла 90—100 кгс/мм2. Для сравнения можно указать, что прочность на сжатие чугуна 60—120, стали 200 кгс/мм2.

На прочность стекла оказывает влияние его химический состав. Так, окислы СаО и B2O3 значительно повышают прочность, РbО и Al2O3 в меньшей степени, MgO, ZnO и Fe2O3 почти не изменяют ее.

Предел прочности при растяжении определяют по формуле R = P/S, где R — предел прочности при растяжении, кгс/мм2 (Па); Р — средняя величина разрушающего усилия, кгс; S —площадь шейки образца в момент разрыва, мм2.

Из механических свойств стекол прочность на растяжение является одним из важнейших. Объясняется это тем, что стекло работает на растяжение хуже, чем на сжатие. Обычно прочность стекла на растяжение составляет 3,5—10 кгс/мм2, т. е. в 15—20 раз меньше, чем на сжатие.

Прочность стекла на растяжение зависит от состояния поверхности стекла. Наличие на ней каких-либо повреждений (трещин, царапин) снижает прочность стекла в 4—5 раз. Поэтому для сохранения заданной прочности стекла необходимо оберегать его поверхность от повреждений,   например покрывать кремний органическими пленками. Химический состав влияет на прочность стекла при растяжении примерно так же, как и на прочность при сжатии.

Твердость. Твердость — это способность материала оказывать сопротивление проникновению в него более твердого материала. От твердости зависит продолжительность всех видов механической обработки (в производстве полированного автомобильного и технического стекла).

К твердым сортам относят боросиликатные малощелочные стекла с содержанием B2O3 до 10—12%, твердость которых по шкале Мооса равна 7. Стекла с большим содержанием щелочных окислов имеют меньшую твердость. Наиболее мягкие — многосвинцовые силикатные стекла, твердость которых по шкале Мооса равна 5—6.

Хрупкость. Хрупкость стекол определяется способностью противостоять удару. Большая хрупкость стекол ограничивает их применение. В лабораторных условиях вместо хрупкости определяют микрохрупкость стекла, которая измеряется числом микротрещин, образовавшихся на поверхности стекла при вдавливании в него алмазной пирамидки.

На хрупкость, стекол влияют однородность, конфигурация и толщина изделий: чем меньше посторонних включений в стекле, чем более оно однородно, тем выше его хрупкость. Хрупкость стекол практически не зависит от состава. При увеличении в составе стекол B2O3, SiO2, Al2O3, ZrO2, MgO хрупкость незначительно понижается.