Термическая обработка

В зависимости от химического состава сплавы подразделяются на термически неупрочняемые и термически упрочняемые. Первые или вообще не подвергают никакой термообработке как например, многие сплавы на основе меди, алюминиевые сплавы типа АД1, АМЦ и др., или отжигают. Вторые также могут поставляться без термообработки в состоянии после прессования или после отжига, но их можно и упрочнять путем закалки и старения. Впервые основы теории термической обработки металлических сплавов разработал великий русский металлург Д. А. Чернов.

Операция отжига заключается в нагреве металла до определенной температуры, характерной для данного сплава, выдержке при этой температуре и медленном охлаждении. В результате отжига металл становится более мягким, пластичным. Поэтому часто отжиг применяют для тех пресс-изделий, которые подвергают дальнейшей обработке давлением. Например, прессуют пруток из алюминиевого сплава Д18. Этот пруток служит заготовкой для последующего волочения на проволоку меньшего диаметра. Для того, чтобы при волочении можно было осуществить большую деформацию л металл не разрушился, прессованную заготовку приходится отжигать при температуре около 400°С. Отжиг проводят чаще всего в электрических печах с воздушной циркуляцией.

Очень большое значение в технике имеет другой вид термической обработки, называемый закалкой. При закалке металл становится прочнее, тверже. Во многих машинах, аппаратах и других конструкциях отдельные части и детали могут выдержать высокие рабочие напряжения только потому, что они закалены. Закалке подвергают не каждый сплав, а только такой, в котором при нагреве происходит внутренняя перестройка структуры металла, вызывающая изменения его свойств.

Суть закалки заключается в следующем. При повышенных температурах, характерных для каждого сплава, в основном металле сплава, например, в алюминии алюминиевого сплава, растворяются легирующие элементы, упрочняющие его (медь, магний, цинк и др.). В результате получается так называемый твердый раствор на основе алюминия, который прочнее чистого алюминия. Если этот твердый раствор охлаждать медленно, то упрочняющие элементы из него выделятся, так как растворимость их в алюминии при понижении температуры уменьшается и сплав станет мягким и пластичным. Если же твердый раствор охладить быстро, то упрочняющие элементы из него не успеют выделиться, и при комнатной температуре сплав будет иметь повышенные прочностные свойства.

В зависимости от состава сплава закалку производят при различных температурах: например, алюминиевые сплавы закаливаются с температуры около 500°С, стали — с 800—1000°С и т. д. Нагрев металла под закалку производят в определенном интервале температур. Для одних сплавов допустимые температуры ограничиваются узким интервалом и такие сплавы называют «чувствительными» к закалке, другие сплавы могут закаливаться в широком интервале температур, и называются «нечувствительными» к закалке.

Большое значение имеет скорость охлаждения с закалочной температуры. Для достижения полного эффекта закалки необходимо, чтобы скорость охлаждения была очень высокой — составляла несколько сотен градусов в секунду. Есть много и других особенностей в закалке различных металлов, создана целая теория закалки, а в промышленности действует широкая сеть термических отделений, цехов и предприятий, где производится закалка различных металлических полуфабрикатов и деталей. Чтобы определить температуру закалки, металловеды строят специальные диаграммы, называемые диаграммами состояния, в которых отражается связь между температурой, содержанием химических элементов сплава и изменениями состава. Например, широко известны диаграммы состояния систем железо — углерод, алюминий — медь и др., которые являются научной основой для различных видов термической обработки. Такие диаграммы показывают, в частности, до какой температуры нужно нагреть сплав, чтобы в нем произошли изменения, обеспечивающие получение желаемых свойств.

Закалку осуществляют следующим образом. Профили нагревают в специальных печах до температуры закалки и некоторое время выдерживают в них для ее выравнивания по всему объему профиля. В это время в металле завершаются те изменения структуры, о которых мы говорили выше. Затем нагретый металл очень быстро охлаждают, например, путем резкого погружения в ванну с холодной водой.

В последние годы большое число пресс-изделий, прежде всего из алюминиевых сплавов типа АД31, стали закаливать сразу же после выхода их из матрицы. Оказывается, горячее прессование можно вести при таких условиях, что температура изделия после выхода из матрицы будет равна температуре закалки. В этом случае достаточно профиль охладить прямо на столе пресса и закалка будет осуществлена. Охлаждающей средой для алюминиевых сплавов типа АД31 служит или воздух, который нагнетается вентилятором, или разбрызганная в мелкие капли вода (водяной туман). Закалка на столе пресса очень выгодна — устраняется повторный нагрев перед закалкой, в результате экономятся энергия и трудовые затраты. Кроме того, не нужно строить дорогостоящие закалочные агрегаты, да и качество готовых профилей, закаленных на столе пресса, в основном выше, чем при закалке из печи. При этом, однако, следует иметь в виду, что пока на столе пресса можно закаливать не все сплавы, а лишь «нечувствительные» к закалке, как например, упомянутый выше сплав АД31.

К операциям термической обработки относится также старение, которое применяется, например, для алюминиевых сплавов и различных сталей. Дело в том, что после закалки некоторые алюминиевые сплавы не сразу приобретают наибольшую прочность, а этот процесс при комнатной температуре может длиться долгое время. Для его ускорения применяют нагрев до не очень высоких температур. Например, один из вариантов старения для сплава АД31: нагрев до 195—205 °С в течение 2—3 ч. Такое старение при повышенных температурах называют искусственным в отличие от естественного — при комнатной температуре. Искусственное старение проводят в специальных печах, и выполняют эту операцию после обрезки профилей.